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Abstract

Photo 51, the iconic diffraction image of DNA, provided critical evidence for the
double-helical structure of nucleic acids. Under the Fraunhofer (far-field) approxima-
tion, the measured diffraction intensity of an sample is proportional to the squared
magnitude of the Fourier transform of the sample’s electron density. In this write-up,
we derive the diffraction pattern for an idealized double helix modeled as two coiled
δ function wires and demonstrate that the resulting diffraction pattern exhibits the
discrete layer lines observed in the famous photograph.

1 Introduction

The structural determination of DNA is one of the most celebrated achievements in modern
science. The famous ”Photo 51” (shown in Figure 1), obtained by Franklin and Gosling in
1952, revealed an X-shaped diffraction pattern that was pivotal in identifying the double-
helical structure of DNA [1, 2]. In diffraction experiments, the measured intensity is (to a
good approximation) the squared magnitude of the Fourier transform of the object’s elec-
tron density. This relationship is rigorously established under the Fraunhofer diffraction
approximation.

The Fraunhofer approximation applies when the distance L between the sample (aper-
ture) and the detector satisfies

L ≫ D2

λ
,

where D is a characteristic dimension of the sample and λ is the wavelength of the incident
radiation. Two key assumptions underlie this approximation [3, 4]:

1. Planar Wavefronts: The incident radiation is assumed to be a plane wave, so that
any curvature in the wavefronts over the extent of the sample can be neglected.

2. Linear Phase Variation: The phase difference across the aperture is approximately
linear, allowing the spherical wave emanating from the aperture to be approximated
locally by a plane wave.
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Figure 1: ”Photo 51”, key evidence in revealing the structure of DNA (Kings College London
Archives)

Under these conditions, the complex amplitude U(P ) at a point P in the far field is given
by the scalar diffraction integral

U(P ) =
eikL

iλL

∫
A

U(r′) e−ik r·r′
L d2r′,

where r′ are coordinates in the aperture plane, r are coordinates in the detection plane, and
k = 2π/λ. Defining the spatial frequency coordinates

qx =
kx

L
, qy =

ky

L
,

the integral becomes

U(P ) ∝
∫
A

U(r′) e−i(qxx′+qyy′) d2r′ = F{U(r′)}.

Since the measured intensity is
I(P ) = |U(P )|2,

it follows that

I(P ) ∝
∣∣∣F{U(r′)}

∣∣∣2.
A full proof of this relationship, including all approximations and assumptions, is given in
Osgood’s Lectures on Fourier Transform and Its Applications [5]. This fundamental result
underpins the interpretation of diffraction experiments: by measuring I(P ), one obtains
information about the Fourier transform of the sample’s electron density and, by inversion,
about its structure.
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Here, we adopt a coordinate system in which the double helix is aligned along the z-axis
and the incident beam is directed along +z (normal incidence). Although real experiments
may involve oblique incidence, any such configuration can be rotated into this frame without
loss of generality. Our goal is to derive the diffraction pattern for the double helix and show
that its Fourier transform exhibits discrete layer lines at

qz =
2π

p
m, m ∈ Z,

with the transverse profile of each line modulated by Bessel functions Jm(Rq⊥).

2 Theoretical Derivation

2.1 Modeling the Double Helix

We model the double helix by representing each strand as an infinitely thin wire whose
electron density is confined to a helical curve. The parametric equations for the two strands
are

r1(t) =
(
R cos t, R sin t,

p

2π
t
)
,

r2(t) =
(
R cos(t+ π), R sin(t+ π),

p

2π
t
)
,

where R is the helix radius, p is the pitch (the distance along z per full turn), and t ∈ R.
The two strands are separated by a phase shift of π (half a turn). The overall scattering
density is then given by

ρ(r) =

∫ ∞

−∞
δ
(
r− r1(t)

)
dt+

∫ ∞

−∞
δ
(
r− r2(t)

)
dt.

2.2 Fourier Transform and Diffraction Amplitude

Under the Fraunhofer approximation, the diffraction amplitude F (q) at scattering vector q
is given by the three-dimensional Fourier transform of ρ(r):

F (q) =

∫
d3r ρ(r) e−iq·r.

Substituting the expression for ρ(r) gives

F (q) =

∫ ∞

−∞
e−iq·r1(t) dt+

∫ ∞

−∞
e−iq·r2(t) dt.

Assuming the incident beam travels along +z (normal incidence) and the helix is aligned
along z, we write the scattering vector as

q = (qx, qy, qz),
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and define the transverse component

q⊥ =
√
q2x + q2y, ϕ = tan−1

(
qy
qx

)
.

For the first strand, we have

q · r1(t) = qx R cos t+ qy R sin t+ qz
p

2π
t.

For the second strand, using cos(t+ π) = − cos t and sin(t+ π) = − sin t, we obtain

q · r2(t) = −
(
qxR cos t+ qy R sin t

)
+ qz

p

2π
t.

Expressing the transverse term in polar form,

qx cos t+ qy sin t = q⊥ cos(t− ϕ),

we rewrite the exponentials as

e−iq·r1(t) = e−i[Rq⊥ cos(t−ϕ)+ p
2π

qz t],

e−iq·r2(t) = e−i[−Rq⊥ cos(t−ϕ)+ p
2π

qz t].

2.3 Expansion Using the Jacobi–Anger Identity

To handle the cosine term, we apply the Jacobi–Anger expansion:

e−iRq⊥ cos(t−ϕ) =
∞∑

n=−∞

(−i)n Jn(Rq⊥) e
−in(t−ϕ).

Similarly,

eiRq⊥ cos(t−ϕ) =
∞∑

n=−∞

in Jn(Rq⊥) e
−in(t−ϕ).

Substituting these expansions into the integrals, we obtain

F1(q) =
∞∑

n=−∞

(−i)n Jn(Rq⊥) e
inϕ

∫ ∞

−∞
e−i(n+ p

2π
qz)t dt,

F2(q) =
∞∑

n=−∞

in Jn(Rq⊥) e
inϕ

∫ ∞

−∞
e−i(n− p

2π
qz)t dt.

Using the Fourier integral identity∫ ∞

−∞
e−iωt dt = 2π δ(ω),

the t-integrals yield

F1(q) = 2π
∞∑

n=−∞

(−i)n Jn(Rq⊥) e
inϕ δ

(
n+

p

2π
qz

)
,

F2(q) = 2π
∞∑

n=−∞

in Jn(Rq⊥) e
inϕ δ

(
n− p

2π
qz

)
.
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2.4 Emergence of Layer Lines

The delta functions impose the conditions

n = − p

2π
qz or n =

p

2π
qz.

Letting m = n, nonzero contributions occur only when

qz =
2π

p
m, m ∈ Z.

Thus, the diffraction amplitude is nonzero only on these discrete “layer lines” in reciprocal
space. The transverse amplitude along each layer line is modulated by the Bessel function
Jm(Rq⊥). Therefore, the intensity,

I(q) =
∣∣F (q)

∣∣2,
exhibits horizontal bands in the (qx, qz) plane at qz = 2π

p
m, with each band’s transverse

profile given by [Jm(Rq⊥)]
2.

3 Simulation and Discussion

Figure 2 shows a simulated diffraction intensity map I(qx, qz) for the double helix under
normal incidence, reproducing the characteristic pattern of Photo 51. In the simulation,

each ideal delta function δ
(
qz − 2π

p
m
)
is approximated by a narrow Gaussian with width σ

so that the discrete layer lines appear as horizontal stripes. The brightest band (typically
corresponding to m = 0) is located at qz = 0, with additional bands appearing at integer
multiples of 2π/p.

This derivation relies on the Fraunhofer approximation, which is justified when the de-
tector is sufficiently far from the sample such that the phase variations over the aperture can
be approximated linearly. Under these conditions, the diffracted field is given by the Fourier
transform of the sample’s electron density, and the intensity is the squared magnitude of this
transform. This result is fundamental to the field of crystallography and diffraction-based
imaging methods [5].

By choosing the coordinate system such that the helix axis and the incident beam are
aligned along the z-axis, the mathematical treatment is simplified without loss of general-
ity. Any experimental configuration with oblique incidence can be rotated into this frame,
preserving the intrinsic features of the diffraction pattern.

4 Conclusion

We have derived the diffraction pattern of a double helix under Fraunhofer conditions, show-
ing that the far-field intensity is given by the squared magnitude of the Fourier transform
of the helical density. The derivation, based on standard approximations and the Jacobi–
Anger expansion, demonstrates that the diffraction amplitude is nonzero only along discrete
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Figure 2: Simulated diffraction intensity for a double helix under normal incidence. Layer
lines appear at qz =

2π
p
m.

layer lines at qz = 2π
p
m, with the transverse profile modulated by Bessel functions. This

analysis not only explains the classical features observed in Photo 51 but also reinforces the
fundamental principle that, under the Fraunhofer approximation, the diffraction intensity is
directly related to the Fourier transform of the scattering object.

5 Acknowledgements

Sections of this document, including some calculations and code, were generated and revised
with ChatGPT (OpenAI, 2025).

Appendix: Simulation Code

Below is the Python code used to generate Figure 2. It sets up a two-dimensional (qx, qz)
grid, sums over layer-line indices m, and approximates each ideal delta function by a narrow
Gaussian.

import numpy as np

import matplotlib.pyplot as plt

from scipy.special import jv

# Parameters
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R = 1.0 # Helix radius

p = 3.4 # Helix pitch

M = 5 # Indices from -M to M

sigma = 0.05 # Gaussian width to mimic delta function

# q-space grid

qx_min, qx_max = -20, 20

qz_min, qz_max = -10, 10

Nqx, Nqz = 400, 400

qx = np.linspace(qx_min, qx_max, Nqx)

qz = np.linspace(qz_min, qz_max, Nqz)

QX, QZ = np.meshgrid(qx, qz)

# Compute intensity

I_normal = np.zeros_like(QX)

for m in range(-M, M+1):

envelope = jv(m, R * np.abs(QX))**2

layer = np.exp(-((QZ - (2*np.pi*m/p))**2)/(2*sigma**2))

I_normal += envelope * layer

# Plot

plt.figure(figsize=(8,6))

plt.imshow(I_normal, origin=’lower’, extent=[qx_min, qx_max, qz_min, qz_max],

aspect=’auto’, cmap=’inferno’)

plt.xlabel(r’$q_x$’)

plt.ylabel(r’$q_z$’)

plt.title(’Simulated Diffraction Intensity (Normal Incidence)\nLayer lines at $q_z=2\\pi m/p$’)

plt.colorbar(label=’Intensity (a.u.)’)

plt.show()
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